EMC TEST REPORT

For

Shenzhen AMB Technology Co., Ltd

Smart Dimmable IP67 LED Tube

Test Model: WP6F-T16-60W

Additional Models: Please Refer To Page 9 model list

Prepared for : Shenzhen AMB Technology Co., Ltd

Address : Building 3, Huaqiang Logistics Industrial Park, Qingfeng

Road, Baolong Community, Longgang District, Shenzhen,

Guangdong, China

Prepared by : Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Address : 101-201, No.39 Building, Xialang Industrial Zone, Heshuikou

Community, Matian Street, Guangming District, Shenzhen,

China

Tel : (+86)755-29871520 Fax : (+86)755-29871521 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : May 05, 2020

Number of tested samples : 1

Serial number : Prototype

Date of Test : May 05, 2020 ~ June 17, 2020

Date of Report : June 17, 2020

EMC TEST REPORT

EN 55015: 2013+A1: 2015

Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

EN 61547: 2009

Equipment for general lighting purposes - EMC immunity requirements

Report Reference No.....: LCS200505011BE

Date Of Issue....: June 17, 2020

Testing Laboratory Name: Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Address.....: 101-201, No.39 Building, Xialang Industrial Zone, Heshuikou

Community, Matian Street, Guangming District, Shenzhen, China

Testing Location/ Procedure....: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Shenzhen AMB Technology Co., Ltd

Address...... Building 3, Huaqiang Logistics Industrial Park, Qingfeng Road,

Baolong Community, Longgang District, Shenzhen, Guangdong,

China

Test Specification:

Standard..... EN 55015: 2013+A1: 2015

EN 61000-3-2: 2014 EN 61000-3-3: 2013 EN 61547: 2009

Test Report Form No...... SLCSEMC-2.1

TRF Originator.....: Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2016-08

Shenzhen Southern LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Southern LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Southern LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Smart Dimmable IP67 LED Tube

Trade Mark.....: SZAME

Test Model..... WP6F-T16-60W

Power Supply...... AC100-240V, 50Hz, 0.246A, 60W

Results: PASS

Compiled by:

Supervised by:

Amy Liu/ File administrators

Dm Gu/ Technique principal

my

Cherry Chen / Manager

June 17, 2020

Date of issue

Test Report No.:

EMC - TEST REPORT

LCS200505011BE

EUT...... Smart Dimmable IP67 LED Tube Test Model..... WP6F-T16-60W Applicant...... Shenzhen AMB Technology Co., Ltd Address...... Building 3, Huaqiang Logistics Industrial Park, Qingfeng Road, Baolong Community, Longgang District, Shenzhen, Guangdong, Telephone...... / Fax.....: / Manufacturer...... Shenzhen AMB Technology Co., Ltd Address...... Building 3, Huaqiang Logistics Industrial Park, Qingfeng Road, Baolong Community, Longgang District, Shenzhen, Guangdong, China Telephone...../ Fax..... : / Factory...... Shenzhen AMB Technology Co., Ltd Address...... Building 3, Huaqiang Logistics Industrial Park, Qingfeng Road, Baolong Community, Longgang District, Shenzhen, Guangdong, Telephone...... / Fax..... : /

Test Result according to the standards on page 6: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	June 17, 2020	Initial Issue	Cherry Chen

TABLE OF CONTENTS

1. REPORT INFORMATION DESCRIPTION	6
1.1 Summary of Standards and Results	6
1.2 Product Information	8
1.3 Description of Test Facility	10
2. STATEMENT OF THE MEASUREMENT UNCERTAINTY	11
3. MEASURING DEVICES AND TEST EQUIPMENT	12
4. TEST DETAILS	14
4.1 Conducted Disturbance at Mains Terminals	14
4.2 Radiated Disturbance (9kHz to 30MHz)	15
4.3 Radiated Disturbance (30MHz to 300MHz)	16
4.4 Harmonic Current Emissions.	18
4.5 Electrostatic Discharge Immunity Test	19
4.6 Radiated, Radio-Frequency, Electromagnetic Field Immunity Test	21
4.7 Electrical Fast Transient/Burst Immunity Test.	23
4.8 Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields	25
4.9 Surge Immunity Test	27
4.10 Voltage Dips, Short Interruptions and Voltage Variations Immunity Test	29
ANNEX A (Test photograph)	30
ANNEX B (External and internal photos of the EUT)	34
ANNEX C (Emission and Immunity test results)	37

1. REPORT INFORMATION DESCRIPTION

1.1 Summary of Standards and Results

1.1.1 Description of Standards and Results

EMISSI	ON (EN 55015: 2013+A1: 2	015)	
Description of Test Item	Test Standard	Limits	Results
Conducted Disturbance at Mains Terminals	EN 55015: 2013+A1: 2015		PASS
Conducted Disturbance at Load Terminals	EN 55015: 2013+A1: 2015		N/A
Conducted Disturbance at Control Terminals	EN 55015: 2013+A1: 2015		N/A
Radiated Disturbance (9kHz to 30MHz)	EN 55015: 2013+A1: 2015		PASS
Radiated Disturbance (30MHz to 300MHz)	EN 55015: 2013+A1: 2015		PASS
Harmonic Current Emissions*	EN 61000-3-2: 2014	Class C	PASS
Voltage Fluctuations & Flicker**	EN 61000-3-3: 2013		N/A
IMN	MUNITY (EN 61547: 2009)		
Description of Test Item	Test Standard	Basic Standard	Results
Electrostatic Discharge Immunity Test (ESD)	EN 61547: 2009	EN 61000-4-2	PASS
Radiated, Radio-Frequency, Electromagnetic Field Immunity Test (RS)	EN 61547: 2009	EN 61000-4-3	PASS
Power Frequency Magnetic Field Immunity Test	EN 61547: 2009	EN 61000-4-8	N/A
Electrical Fast Transient/Burst Immunity Test (EFT)	EN 61547: 2009	EN 61000-4-4	PASS
Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields (CS)	EN 61547: 2009	EN 61000-4-6	PASS
Surge Immunity Test (a.c. Power Ports)	EN 61547: 2009	EN 61000-4-5	PASS
Voltage Dips, Short Interruptions and Voltage Variations Immunity Test	EN 61547: 2009	EN 61000-4-11	PASS

Note: "*" According to EN 61000-3-2:2014, for LED products ≤ 25 watts, no limits are defined for the harmonics test, the EUT is deemed to comply with the standard without test.

Note: N/A is an abbreviation for Not Applicable.

Note: "**" Limits are not specified when LED luminaires with rating less than or equal to 200W(EN 61000-3-3:2013Annex A(A2))

1.1.2 Performance Criteria

The performance of lighting equipment shall be assessed by monitoring:

- the luminous intensity of the luminaire or of the lamp(s).
- the functioning of the control in the case of equipment which includes a regulating control or concerns the regulating control itself.
- the functioning of the starting device, if any.

Performance criterion A: During the test, no change of the luminous intensity shall be observed and the regulating control, if any, shall operate during the test as intended.

Performance criterion B: During the test, the luminous intensity may change to any value. After the test, the luminous intensity shall be restored to its initial value within 1 min. Regulating controls need not function during the test, but after the test, the mode of the control shall be the same as before the test provided that during the test no mode changing commands were given.

Performance criterion C: During and after the test, any change of the luminous intensity is allowed and the lamp(s) may be extinguished. After the test, within 30 min, all functions shall return to normal, if necessary by temporary interruption of the mains supply and/or operating the regulating control.

Additional requirement for lighting equipment incorporating a starting device: After the test, the lighting equipment is switched off. After half an hour, it is switched on again. The lighting equipment shall start and operate as intended.

1.2 Product Information

1.2.1 Electrical parameter description

EUT : Smart Dimmable IP67 LED Tube

Trade Mark : SZAMB

Test Model : WP6F-T16-60W

Additional Models : See page 9 model list

Power Supply : See page 9 model list

1.2.2 Test Modes

Lighting : EUT was test with power on, to get the status 'Lighting'

1.2.3 Test Auxiliary Equipment

Configuration	Model	Rating	Manufacturer

1.2.4 General Product Information

The EUTs are general luminaires for illumination purpose. detailed differences shown in below.

Model list:

Model	Rating
WP6F-T16-60W	AC100-240V, 50Hz, 60W, IP67, ta.35°C
WP6F-T16-50W	AC100-240V, 50Hz, 50W, IP67, ta.35°C
WP6F-T16-40W	AC100-240V, 50Hz, 40W, IP67, ta.35°C
WP6F-T16-30W	AC100-240V, 50Hz, 30W, IP67, ta.35°C
WP5F-T16-36W	AC100-240V, 50Hz, 36W, IP67, ta.35°C
WP5F-T16-45W	AC100-240V, 50Hz, 45W, IP67, ta.35°C
WP5F-T16-40W	AC100-240V, 50Hz, 45W, IP67, ta.35°C
WP5F-T16-30W	AC100-240V, 50Hz, 45W, IP67, ta.35°C
WP4F-T16-30W	AC100-240V, 50Hz, 30W, IP67, ta.35°C
WP4F-T16-24W	AC100-240V, 50Hz, 24W, IP67, ta.35°C
WP4F-T16-20W	AC100-240V, 50Hz, 20W, IP67, ta.35°C
WP3F-T16-20W	AC100-240V, 50Hz, 20W, IP67, ta.35°C
WP3F-T16-15W	AC100-240V, 50Hz, 15W, IP67, ta.35°C
WP2F-T16-15W	AC100-240V, 50Hz, 15W, IP67, ta.35°C
WP2F-T16-10W	AC100-240V, 50Hz, 10W, IP67, ta.35°C
WP6G-T10-36W	AC100-240V, 50Hz, 36W, IP67, ta.35°C
WP6G-T10-30W	AC100-240V, 50Hz, 30W, IP67, ta.35°C
WP6G-T10-24W	AC100-240V, 50Hz, 24W, IP67, ta.35°C
WP6G-T10-20W	AC100-240V, 50Hz, 20W, IP67, ta.35°C
WP5G-T10-30W	AC100-240V, 50Hz, 30W, IP67, ta.35°C
WP5G-T10-28W	AC100-240V, 50Hz, 28W, IP67, ta.35°C
WP5G-T10-25W	AC100-240V, 50Hz, 25W, IP67, ta.35°C
WP5G-T10-20W	AC100-240V, 50Hz, 20W, IP67, ta.35°C
WP4G-T10-24W	AC100-240V, 50Hz, 24W, IP67, ta.35°C
WP4G-T10-20W	AC100-240V, 50Hz, 20W, IP67, ta.35°C
WP4G-T10-18W	AC100-240V, 50Hz, 18W, IP67, ta.35°C
WP4G-T10-15W	AC100-240V, 50Hz, 15W, IP67, ta.35°C
WP3G-T10-15W	AC100-240V, 50Hz, 15W, IP67, ta.35°C
WP3G-T10-12W	AC100-240V, 50Hz, 12W, IP67, ta.35°C
WP3G-T10-10W	AC100-240V, 50Hz, 10W, IP67, ta.35°C
WP2G-T10-10W	AC100-240V, 50Hz, 10W, IP67, ta.35°C
WP2G-T10-8W	AC100-240V, 50Hz, 8W, IP67, ta.35°C
WP2G-T10-6W	AC100-240V, 50Hz, 6W, IP67, ta.35°C

1.3 Description of Test Facility

EMC Lab. : TUV RH Registration Number. is UA 50418075 0001.

UL Registration Number. is 100571-492. NVLAP Registration Code is 600112-0.

Test Facilities : Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201, No.39 Building, Xialang Industrial Zone, Heshuikou Community,

Matian Street, Guangming District, Shenzhen, China.

RF Field Strength: Shenzhen LCS Compliance Testing Laboratory Ltd.

Susceptibility 101, 201 Building A and 301 Building C, Juji Industrial Park,

Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, Guangdong,

China

2. STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Parameters	Expanded uncertainty (U _{lab})	Expanded uncertainty (U _{cispr})
Conducted Disturbance	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 1.40 dB ± 2.80 dB	± 4.0 dB ± 3.6 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz) ± 3.46 dB		N/A
Radiated Disturbance	Level accuracy (9kHz to 30MHz)	± 3.12 dB	N/A
Radiated Disturbance	Level accuracy (30MHz to 200MHz)	± 4.66 dB	± 5.2 dB
Radiated Disturbance	Radiated Disturbance Level accuracy (200MHz to 1000MHz)		± 5.0 dB
Harmonic Current	Harmonic Current Voltage		N/A
Voltage Fluctuations & Flicker	Voltage	± 0.530%	N/A

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. MEASURING DEVICES AND TEST EQUIPMENT

Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	EMI Test Receiver	R&S	ESCI	101142	2020-06-20
2	10dB Attenuator	SCHWARZBECK	VTSD9561-F	9561-F159	2020-06-20
3	Artificial Mains	SCHWARZBECK	NSLK8127	8127716	2020-06-20
4	EMI Test Software	EZ	EZ_EMC	N/A	2020-06-20
5	ISN CAT6	SCHWARZBECK	NTFM 8158	NTFM 8158#120	2020-06-20
6	Voltage Probe	SCHWARZBECK	KT 9420	9420401	2020-06-20

Radiated Disturbance(9kHz to 30MHz)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	EMI Test Receiver	R&S	ESPI	101142	2020-06-20
2	Triple-loop Antenna	EVERFINE	LLA-2	9161	2020-06-20
3	EMI Test Software	EZ	EZ_EMC	N/A	2020-06-20

Radiated Disturbance(30MHz to 300MHz)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2021-08-05
2	EMI Test Receiver	R&S	ESCI	101010	2020-06-20
3	Log per Antenna	SCHWARZBECK	VULB9163	5094	2020-06-23
4	EMI Test Software	AUDIX	E3	N/A	2020-06-20
5	Positioning Controller	MF	BK8807-4A-2T	2016-0808-008	2020-06-20

Harmonic Current&Voltage Fluctuation and Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Power Analyzer Test System	Laplace	AC2000A	/	2020-06-20

Electrostatic Discharge Immunity Test (ESD)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	ESD Simulator	KIKUSUI	KES4021	KC001311	2020-06-24

Electrical Fast Transient/Burst Immunity Test (EFT)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Electrical fast transient(EFT)generator	HTEC	HEFT51	162201	2020-06-20
2	Coupling Clamp	HTEC	Н3С	163701	2020-06-20

Surge Immunity Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Surge test system	3CTEST	SG5006G	EC5581070	2020-06-20
2	Coupling/decoupling network	3CTEST	SGN-5010G	EC5591033	2020-06-20

Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields (CS)

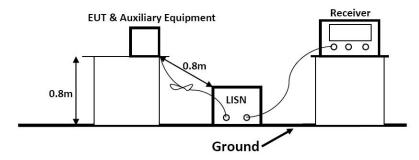
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Conducted Susceptibility Generator	НТЕС	CDG6000	126A140012016	2020-06-20
2	CDN	HTEC	CDN-M2+M3	A22/0382/2016	2020-06-25
3	Attenuator	HTEC	ATT6	HA1601	2020-06-20
4	Electromagnetic Injection Clamp	LUTHI	EM101	35535	2020-06-20

Power Frequency Magnetic Field Immunity Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Power frequency mag-field generator System	НТЕС	HPFMF100	100-2400	2020-06-20

Voltage Dips, Short Interruptions and Voltage Variations Immunity Test

Iten	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Voltage dips and up generator	HTEC	HPFS161P	162202	2020-06-20


Radiated, Radio-Frequency, Electromagnetic Field Immunity Test (RS)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	RS Test Software	Tonscend	/	/	N/A
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2020-11-14
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2023-06-11
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	2020-11-21
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	2020-11-21
6	Stacked Broadband Log Periodic Antenna	SCHWARZBECK	STLP 9128	9128ES-145	2020-11-21
7	Stacked Mikrowellen LogPer Antenna	SCHWARZBECK	STLP 9149	9149-484	2020-11-21
8	RS Test Software	Tonscend	/	/	2021-03-24

4. TEST DETAILS

4.1 Conducted Disturbance at Mains Terminals

4.1.1 Block Diagram of Test Setup

4.1.2 Test Standard

EN 55015: 2013+A1: 2015

4.1.3 Limits

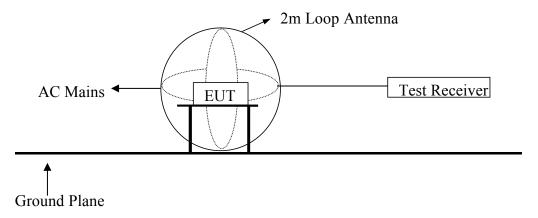
Disturbance voltage limits at the Mains Terminals					
Frequency range	Limits (dBµV)				
	Quasi-peak	Average			
9kHz to 50kHz	110				
50kHz to 150kHz	90 ~ 80*				
150kHz to 0.5MHz	66 ~ 56*	56 ~ 46*			
0.5MHz to 5.0MHz	56	46			
5.0MHz to 30MHz	60	50			

- 1. At the transition frequency the lower limit applies.
- 2. * The limit decreases linearly with the logarithm of the frequency in the ranges 50 kHz to 150 kHz and 150 kHz to 0,5 MHz.

4.1.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3

4.1.5 Test Procedure Description


The EUT is put on the table which is 0.8 meter high above the ground and connected to the AC mains through a Line Impedance Stabilization Network (L.I.S.N.). This provided a 500hm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission according to the EN 55015 regulations during conducted emission measurement. And the voltage probe had been used for the load terminals measurement according to the EN 55015 standard.

The bandwidth of the test receiver is set at 200Hz in 9k~150kHz range and 9kHz in 150k~30MHz range.

4.1.6 Test Results:

4.2 Radiated Disturbance (9kHz to 30MHz)

4.2.1 Block Diagram of Test Setup

4.2.2 Test Standard

EN 55015: 2013+A1: 2015

4.2.3 Limits

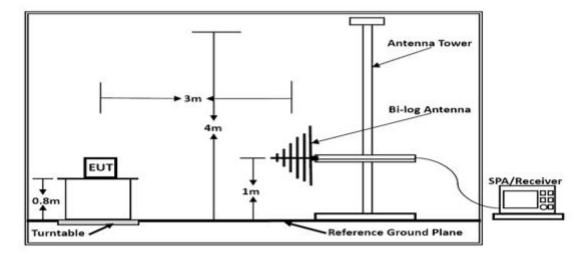
Radiated Disturbance limits (9KHz-30MHz)				
Frequency range	Limits for loop diameter (dBµA)			
rrequency runge	2m			
9kHz to 70kHz	88			
70kHz to 150kHz	88 to 58*			
150kHz to 3.0MHz	58 to 22*			
3.0MHz to 30MHz	22			

- 1. At the transition frequency the lower limit applies.
- 2.* Decreasing linearly with logarithm of the frequency.

4.2.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3

4.2.5 Test Procedure


The EUT is placed on a wood table in the center of a loop antenna. The induced current in the loop antenna is measured by means of a current probe and the test receiver. Three field components are checked by means of a coaxial switch.

The frequency range from 9kHz to 30MHz is investigated. The receiver is measured with the quasi-peak detector. For frequency band 9kHz to 150kHz, the bandwidth of the field strength meter is set at 200Hz. For frequency band 150kHz to 30MHz, the bandwidth is set at 9kHz.

4.2.6 Test Results

4.3 Radiated Disturbance (30MHz to 300MHz)

4.3.1 Block Diagram of Test Setup

4.3.2 Test Standard

EN 55015: 2013+A1: 2015

4.3.3 Limits

Radiated Disturbance Limits at a measuring distance of 3m (30MHz-300MHz)				
Frequency range (MHz)	Quasi-Peak Limits(dBµV/m)			
30 ~ 230	40			
230 ~ 300	47			

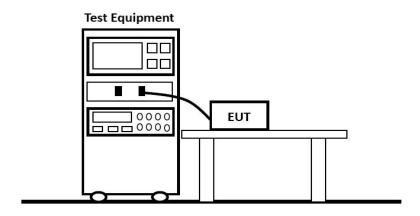
- 1, At the transition frequency, the lower limit applies.
- 2, Distance refers to the distance in meters between the measuring instrument antenna geometric center and the closed point of any part of the EUT.

4.3.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3.

The EN 55015 regulations test method must be used to find the maximum emission during radiated emission measurement.

4.3.5 Test Procedure


The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the Receiver is set at 120kHz; The frequency range from 30MHz to 300MHz is investigated.

4.3.6 Test Results

4.4 Harmonic Current Emissions

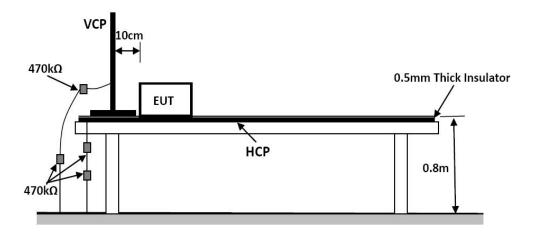
4.4.1 Block Diagram of Test Setup

4.4.2 Test Standard

EN 61000-3-2: 2014

4.4.3 Limits

Limits for Class C Equipment				
Harmonic order	Maximum permissible harmonic currrent			
	expressed as a percentage of the input			
	current at the fundamental frequency			
n	%			
2	2			
3	30⋅λ*			
5	10			
7	7			
$11 \le n \le 39$	5			
(odd harmonics only)				
* λ is the circuit power factor				


4.4.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3

4.4.5 Test Results

4.5 Electrostatic Discharge Immunity Test

4.5.1 Block Diagram of Test Setup

4.5.2 Test Standard

EN 61547:2009

4.5.3 Limits

Electrostatic discharges — Test levels					
Discharge Type	Discharge Level (KV)		Number of discharges		
	+	-	(Each point)	Criteria	
Air Discharge-Direct	2, 4, 8	2, 4, 8	20	В	
Contact Discharge-Direct	2, 4	2, 4	20	В	
Contact Discharge Indirect	2, 4	2, 4	20	В	

4.5.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3

4.5.5 Test Procedure

a) Air Discharge

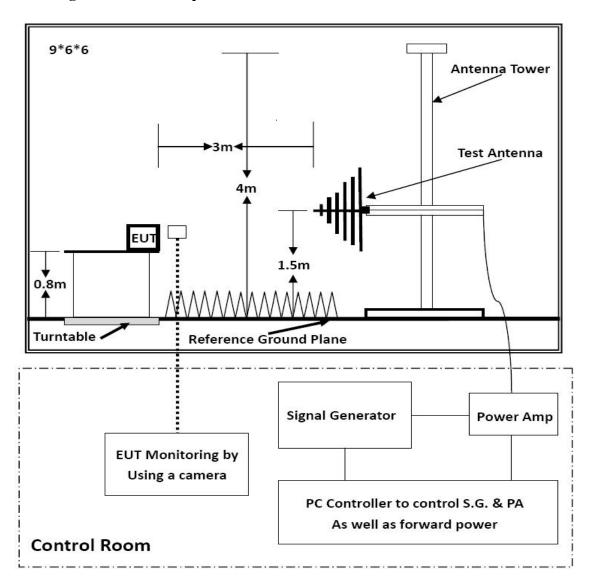
This test is done on a non-conductive surfaces. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

b) Contact Discharge

All the procedure shall be same as Section a. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

c) Indirect Discharge For Horizontal Coupling Plane

At least 20 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.


d) Indirect Discharge For Vertical Coupling Plane

At least 20 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m * 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated

4.5.6 Test Results

4.6 Radiated, Radio-Frequency, Electromagnetic Field Immunity Test

4.6.1 Block Diagram of Test Setup

4.6.2 Test Standard

EN 61547:2009

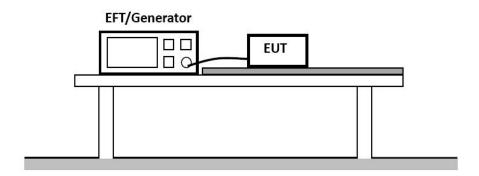
4.6.3 Limits

Radio-frequency electromagnetic fields – Test levels						
Characteristics	Test levels	Performance				
Characteristics	1 est levels	Criteria				
Frequency range	80 MHz to 1 000 MHz	A				
Test level	3 V/m (unmodulated)	A				
Modulation	1 kHz, 80 % AM, sine wave	A				

4.6.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3.

4.6.5 Test Procedure


The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test	Remarks
Fielded Strength	3 V/m
Radiated Signal	Unmodulated
Scanning Frequency	80 - 1000 MHz
Dwell time of radiated	0.0015 decade/s
Waiting Time	3 Sec.

4.6.6 Test Results

4.7 Electrical Fast Transient/Burst Immunity Test

4.7.1 Block Diagram of Test Setup

4.7.2 Test Standard

EN 61547:2009

4.7.3 Limits

	Fast transients - Test levels at input and output a.c. power ports						
Test	Repetition	Burst	Burst	Test	Coupling	Performance	
Levels	Frequency	Duration	Period	Duration	Method	Criteria	
±1 kV	5 kHz	15ms	300ms	2 min per polarity	Direct	В	

Fast transients - Test levels at input and output d.c. power ports							
Test	Repetition	Burst	Burst	Test	Coupling	Performance	
Levels	Frequency	Duration	Period	Duration	Method	Criteria	
$\pm 0.5 \text{kV}$ 5 kHz 15ms 300ms 2 min per polarity Direct B							
Note: Not	Note: Not applicable to equipment not connected to the mains while in use.						

Fast transients - Test levels at ports for signal and control lines						
Test	Repetition	Burst	Burst	Test	Coupling	Performance
Levels	Frequency	Duration	Period	Duration	Method	Criteria
±0.5kV	5 kHz	15ms	300ms	2 min per polarity	Direct	В

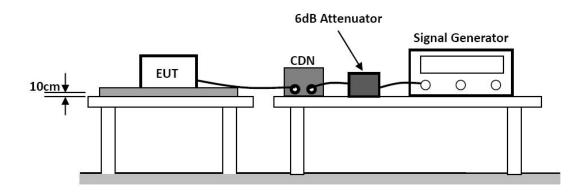
Note 1: Only applicable to ports interfacing with cables whose total length, according to the manufacturer's specification, may exceed 3 m.

Note 2: Change of state commands are not applied during the test.

4.7.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3

4.7.5 Test Procedure


The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test, Fast transients are carried out with a minimum duration of 2 min with a positive polarity and a minimum of 2 min with a negative polarity

4.7.6 Test Results

4.8 Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields

4.8.1 Block Diagram of Test Setup

4.8.2 Test Standard

EN 61547:2009

4.8.3 Limits

Radio-frequency common mode — Test levels at input and output a.c. power ports						
1 1 5 Stand					Performance Criteria	
0.15 to 80	3	1kHz, 80%, AM, Sine wave	CND	1%	A	

Note: Only applicable to ports interfacing with cables whose total length, according to the manufacturer's specification, may exceed 3 m.

Radio-frequency common mode –							
,	Test levels at input and output d.c. power ports						
1 2 Stence				Performance Criteria			
0.15 to 80	3	1kHz, 80%, AM, Sine wave	CND	1%	A		

Note: Only applicable to equipment that is connected to the mains while in use.

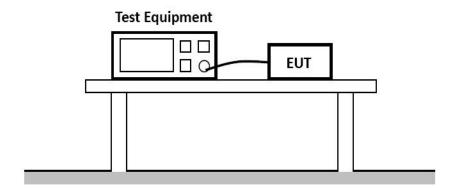
Radio-frequency common mode –							
	Test levels at ports for signal and control lines						
Frequency Test Level Modulation Coupling range (MHz) (V/m) Signal Method Steps Performance Criteria					Performance Criteria		
0.15 to 80	3	1kHz, 80%, AM, Sine wave	CND	1%	A		

Note: Only applicable to ports interfacing with cables whose total length, according to the manufacturer's specification, may exceed 3 m.

Note 2: Change of state commands are not applied during the test.

4.8.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3


4.8.5 Test Procedure

- a) Set up the EUT, CDN and test generators as shown on Section 4.8.1
- b) Let the EUT work in test mode and measure it.
- c) The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- d) The disturbance signal described below is injected to EUT through CDN.
- e)The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- f)The frequency range is swept from 150kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- g)The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- h)Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

4.8.6 Test Results

4.9 Surge Immunity Test

4.9.1 Block Diagram of Test Setup

4.9.2 Test Standard

EN 61547:2009

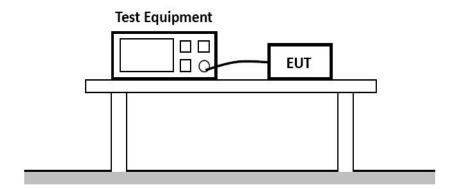
4.9.3 Limits

Surges – Test levels at input a.c. power ports						
		D	Performance			
Characteristics		Self-ballasted lamps		Luminaires and independent auxiliaries		
		and semi-luminaires	Input power		Criteria	
			≤25	>25 W		
Wav	e-shape data	1.2/50 μs	1.2/50 μs	1.2/50 μs		
Test	line to line	±0.5 kV	±0.5 kV	±1.0 kV	C	
Levels	line to ground	±1.0 kV	±1.0 kV	±2.0 kV		

Note: In addition to the specified test level, all lower test levels as detailed in IEC 61000-4-5 should also be satisfied.

4.9.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3


4.9.5 Test Procedure

- a) Set up the EUT and test generator as shown on Section 4.9.1
- b) For line to line coupling mode, provide a 1.0KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- c) For line to earth coupling mode, provide a 2.0KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- d) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- e) Different phase angles are done individually.
- f) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

4.9.6 Test Results

4.10 Voltage Dips, Short Interruptions and Voltage Variations Immunity Test

4.10.1 Block Diagram of Test Setup

4.10.2 Test Standard

EN 61547:2009

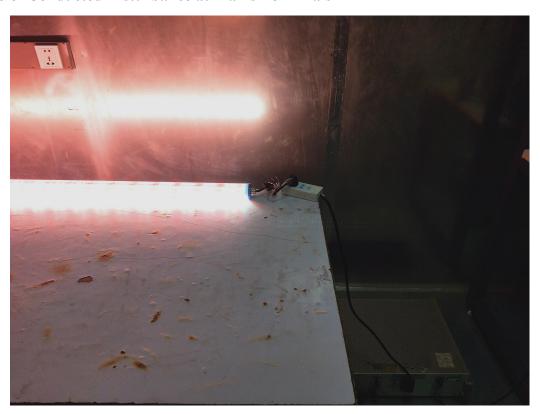
4.10.3 Limits

Voltage dips and short interruptions-Test levels at input a.c. power ports							
	Test Level Duration						
Voltage dips	70% of Vnom	10 cycle(50Hz)	С				
Short Interruptions	0% of Vnom	0.5 cycle(50Hz)	В				

4.10.4 EUT Configuration on Test

The configuration of the EUT is same as Section 3

4.10.5 Test Procedure


- a)Set up the EUT and test generator as shown on Section 4.10.1
- b) The interruptions is introduced at selected phase angles with specified duration.
- c) Record any degradation of performance.

4.10.6 Test Results

ANNEX A

(Test photograph)

A.1 Photo of Conducted Disturbance at Mains Terminals

A.2 Photo of Radiated Disturbance(30MHz to 300MHz)

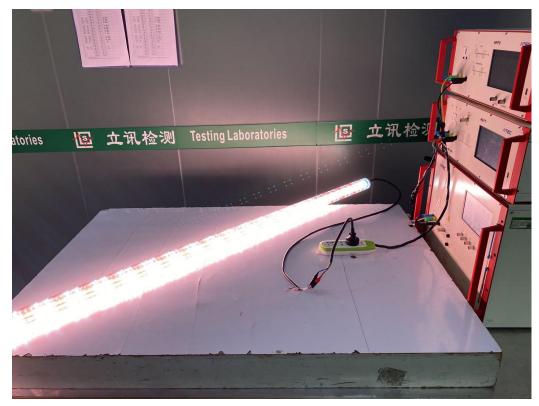
This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Page 30 of 51


A.3 Photo of Harmonic Current Emissions

A.4 Photo of Electrostatic Discharge Immunity Test

A.5 Photo of Electrical Fast Transient/Burst Immunity Test


A.6 Photo of Immunity To Conducted Disturbances, Induced by Radio-Frequency Fields

A.7 Photo of Surge Immunity Test

A.8 Photo of Voltage Dips, Short Interruptions and Voltage Variations Immunity Test

ANNEX B (External and internal photos of the EUT)

Figure. 1

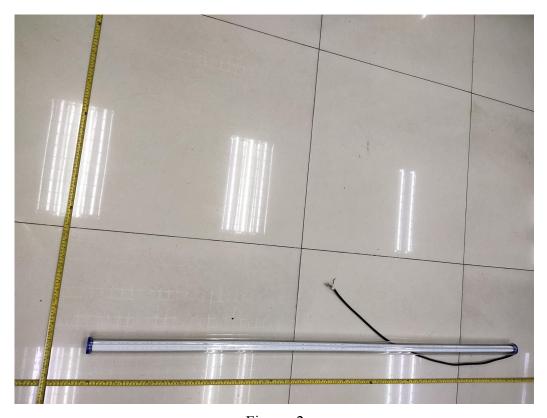


Figure. 2

Figure. 3

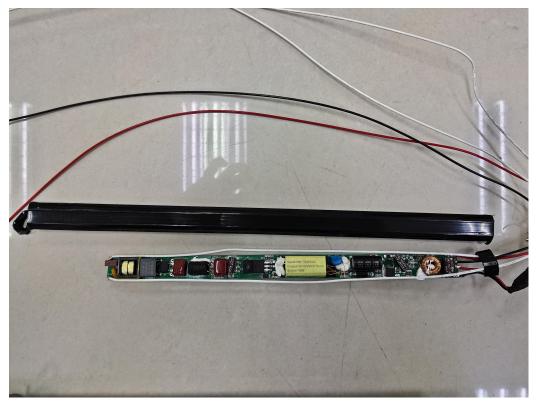


Figure. 4

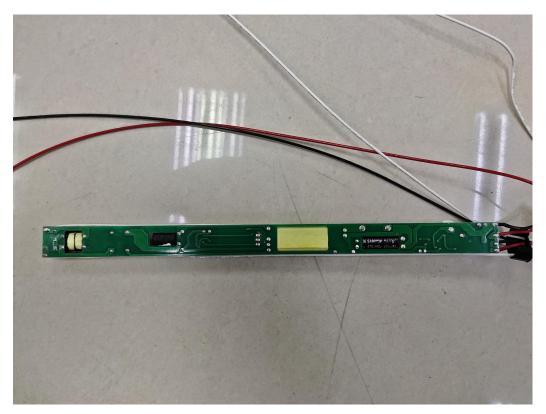
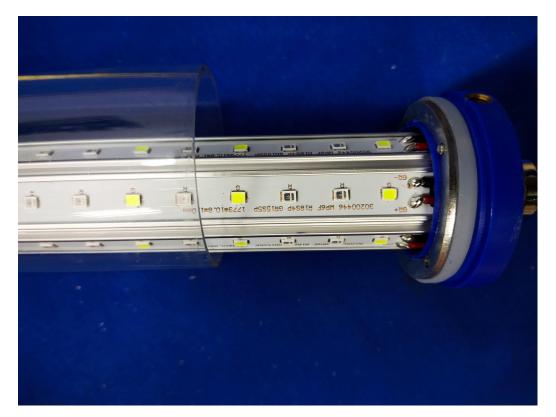
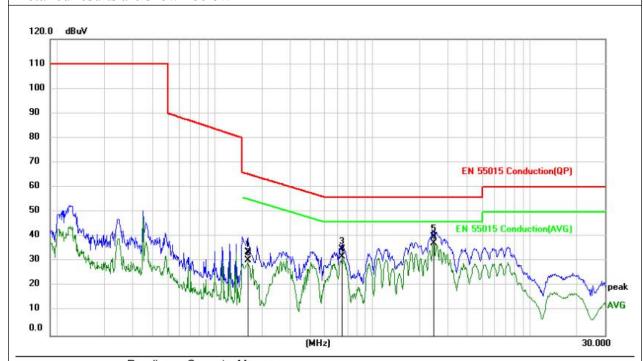


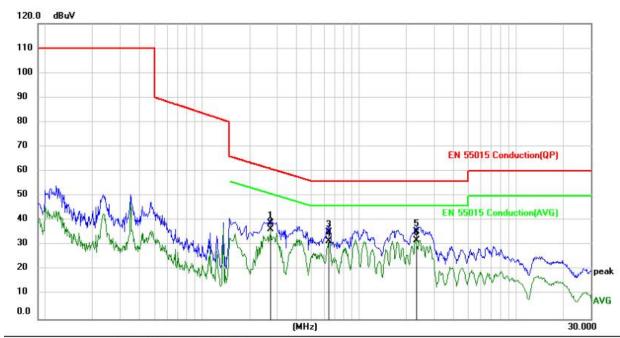
Figure. 5




Figure. 6

ANNEX C

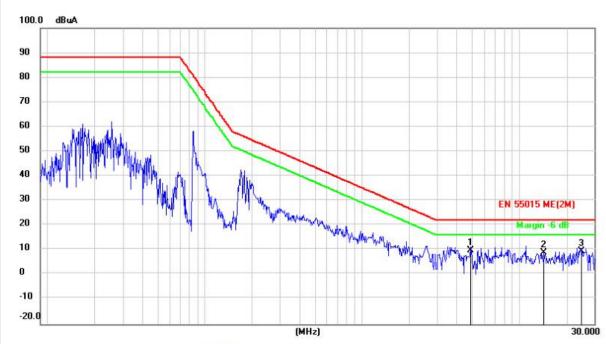
(Emission and Immunity test results)


C.1 Conducted Disturbance at Mains Terminals Test Results

Environmental Conditions:	23.9℃, 53% RH
Test Voltage:	AC 230V,50Hz
Test Model:	WP6F-T16-60W
Test Mode:	Lighting
Test Engineer:	Zed Zhang
Pol:	Line

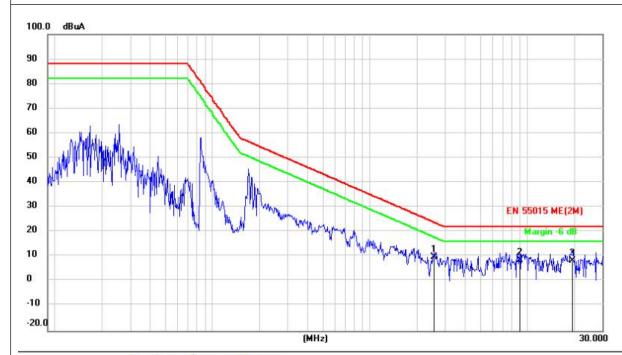
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1618	23.54	10.23	33.77	65.37	-31.60	QP	
2		0.1618	20.27	10.23	30.50	55.37	-24.87	AVG	
3		0.6401	24.84	10.20	35.04	56.00	-20.96	QP	
4		0.6401	21.79	10.20	31.99	46.00	-14.01	AVG	
5		2.4463	29.88	10.20	40.08	56.00	-15.92	QP	
6	*	2.4463	27.02	10.20	37.22	46.00	-8.78	AVG	

Environmental Conditions:	23.9℃, 53% RH
Test Voltage:	AC 230V,50Hz
Test Model:	WP6F-T16-60W
Test Mode:	Lighting
Test Engineer:	Zed Zhang
Pol:	Neutral



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.2722	28.62	10.21	38.83	61.05	-22.22	QP		
2	0.2722	26.11	10.21	36.32	51.05	-14.73	AVG		
3	0.6469	25.15	10.20	35.35	56.00	-20.65	QP		
4	0.6469	21.49	10.20	31.69	46.00	-14.31	AVG		
5	2.3294	25.48	10.20	35.68	56.00	-20.32	QP		
6 *	2.3294	21.71	10.20	31.91	46.00	-14.09	AVG		

C.2 Radiated Disturbance Test Results (9kHz to 30MHz)


Environmental Conditions:	23.9°C, 53% RH								
Test Voltage:	AC 230V,50Hz								
Test Model:	WP6F-T16-60W								
Test Mode:	Lighting								
Test Engineer:	Zed Zhang								
Pol:	X								
Detailed results are shown be	low								
100.0 dBuA									
90									
70									
03.095									
60									
50									
40	, No Ali								
30									
20	EN 55015 ME(2M)								
20	Margin & dis								
8604									
10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
0	The state of the s								
	A COMPANY TO THE PROPERTY OF T								
0	The same of the state of the same of the s								
-10	(MHz) 30.000								
0 -10 -20.0 Reading C									
-10 -20.0	(MHz) 30.000 Correct Measure-								
O -10 -20.0 Reading C No. Mk. Freq. Level MHz dBuA	(MHz) 30.000 Correct Measure- Factor ment Limit Over								
0 -10 -20.0 Reading Control Report	Correct Measure- Factor ment Limit Over dB dBuA dBuA dB Detector Comment								

Environmental Conditions:	23.9℃, 53% RH
Test Voltage:	AC 230V,50Hz
Test Model:	WP6F-T16-60W
Test Mode:	Lighting
Test Engineer:	Zed Zhang
Pol:	Y

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	*	4.8752	10.25	-0.33	9.92	22.00	-12.08	QP		
2		14.3397	20.91	-12.01	8.90	22.00	-13.10	QP		
3		24.8931	29.63	-20.13	9.50	22.00	-12.50	QP		

Environmental Conditions:	23.9℃, 53% RH
Test Voltage:	AC 230V,50Hz
Test Model:	WP6F-T16-60W
Test Mode:	Lighting
Test Engineer:	Zed Zhang
Pol:	Z

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1		2.5684	9.96	0.02	9.98	23.87	-13.89	QP		
2	*	8.9580	12.39	-3.59	8.80	22.00	-13.20	QP		
3		19.3591	23.10	-14.84	8.26	22.00	-13.74	QP		

C.3 Radiated Disturbance Test Results (30MHz to 300MHz)

Environmental Conditions:	23.7℃, 52% RH
Test Voltage:	AC 230V,50Hz
Test Model:	WP6F-T16-60W
Test Mode:	Lighting
Test Engineer:	Zed Zhang
Pol:	Vertical

No.	Mk.	Freq.	Reading	Factor	Measure- ment	Limit	Margin		Antenna Height	Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*	32.0531	22.99	13.37	36.36	40.00	-3.64	QP			
2		93.5395	25.44	9.94	35.38	40.00	-4.62	QP			
3		154.1242	22.23	13.33	35.56	40.00	-4.44	QP			

Environmental Conditions:	23.7℃, 52% RH
Test Voltage:	AC 230V,50Hz
Test Model:	WP6F-T16-60W
Test Mode:	Lighting
Test Engineer:	Zed Zhang
Pol:	Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*	31.4862	23.91	12.83	36.74	40.00	-3.26	QP			
2		57.3450	23.07	12.81	35.88	40.00	-4.12	QP			
3		165.4802	25.42	10.19	35.61	40.00	-4.39	QP			

C.4 Harmonic Current Emissions Test Results

Environmental Conditions:	23.9℃, 53% RH
Test Model:	WP6F-T16-60W
Test Voltage:	AC 230V,50Hz
Test Mode:	Lighting
Test Engineer:	Zed Zhang

Detailed results are shown below

Nominal Supply Voltage : 230 Nominal Supply Frequency : 50 Nominal Crest Phase : 90.0 Nominal Crest Factor : 1.414

	Measured Low	Measured High	Deviation	on Allowed Deviation	Result
Supply Voltag		229.55	-0.51	4.60	PASS
Supply Freque		50.00	-0.01	0. 25	PASS
Crest Phase	: 89.6	90.0	-0.4	3.0	PASS
Crest Factor	: 1.414	1.415	0.001	-0.014/+0.006	PASS
Fundamental V	oltage : 229.51	- 1	270	158	85
Harmonic	Harmonic Voltage	Harmonic	Ratio 1	Limit Result	
2	0. 13	0.00	66 (0. 20 PASS	
3	0. 14	0.00	63 (0. 90 PASS	
4	0.02	0.00	21 (0. 20 PASS	
5	0.01	0.0	13 (0. 40 PASS	
6	0.02	0.0	13 (0. 20 PASS	
7	0. 01	0.0	13 (0. 30 PASS	
8	0.00	0.00	03 (0. 20 PASS	
9	0. 00	0.00	08	0. 20 PASS	
10	0. 02	0.0	10	0. 10 PASS	
11	0.02	0.0	13 (0. 10 PASS	
12	0.00	0.00		0. 10 PASS	
13	0.02	0.00	08 (0. 10 PASS	
14	0. 00	0.00	03 (0. 10 PASS	
15	0.00	0.00	03 (0. 10 PASS	
16	0.00	0.00)2 (0. 10 PASS	
17	0.00	0.00)3 (0. 10 PASS	
18	0.00	0.00		0. 10 PASS	
19	0.00	0.00		0. 10 PASS	
20	0.00	0.00		0. 10 PASS	
21	0.00	0.00		0. 10 PASS	
22	0.00	0.00		0. 10 PASS	
23	0.00	0.00		0. 10 PASS	
24	0. 00	0.00		0. 10 PASS	
25	0.00	0.00		0. 10 PASS	
26	0. 00	0.00		0. 10 PASS	
27	0. 00	0.00		0. 10 PASS	
28	0.00	0.00		0. 10 PASS	
29	0. 00	0. 0		0. 10 PASS	
30	0. 00	0.00		0. 10 PASS	
31	0. 00	0. 00		0. 10 PASS	
32	0. 00	0.00		0. 10 PASS	
33	0. 00	0.00		0. 10 PASS	
34	0. 00	0. 0		0. 10 PASS	
35	0. 00	0.00		0. 10 PASS	
36	0. 00	0. 0		0. 10 PASS	
37	0. 00	0. 00		0. 10 PASS	
38	0. 00	0.00		0. 10 PASS	
39	0. 00	0.00		0. 10 PASS	
40	0. 00	0.00		0. 10 PASS	
40	0. 00	0.00	JU (0. 10 PASS	

Environmental Conditions:	23.9°C, 53% RH
Test Model:	WP6F-T16-60W
Test Voltage:	AC 230V,50Hz
Test Mode:	Lighting
Test Engineer:	Zed Zhang

Supply Voltage : 229.5 Vrms @ 324.6 Vpk Frequency : 50.00 Hz

Supply Meets EN Requirements

Load Power : 60.27 to 60.39 W 62.16 VA Power Factor 0.970

Load Current : 270.8 to 271.4 mArms 371.8 to 374.3 mApk Crest Factor 1.373

Measurement Standard: EN61000-4-7:2002+A1:2009

Limits Applied : EN61000-3-2:2014 Class C Limits >25W for 0.271A at 0.970 PF.

Harmon		Limit	Average	%	max. Value	%	Assessment
Numbe	er	Current	(filtered)	Limit	(Filtered)	Limit	
		mA	mA		mΑ		
Fundar	mental	í	267.7				
2:		5. 4	0.4	7. 4	0.42	7.8	Pass
3:		78. 9	12.5	15.8	12.76	16.2	Pass
4:			0.3	±1	0.40	-7	75
5 :		27. 1	9.4	34. 7	9.44	34.8	Pass
6:		-	0.4	-	0.40	-	=
7 :		19.0	2.8	14.7	2.96	15.6	Pass
8:		10 .	0.4	-	0.42		75
9:		13.6	5.3	39.0	5.43	39.9	Pass
10 :	:	22	0.4	=	0.42	-	2
11	:	8. 1	4.9	60. 5	5.05	62.3	Pass
12	:	-	0.4	-	0.40	-	-
13	:	8. 1	2.6	32. 1	2.74	33.8	Pass
14	:	_	0.4	-	0.42	_	2
15	:	8. 1	3.5	43. 2	3.70	45.7	Pass
16	:		0.4	7	0.42	-	- 2
17	:	8. 1	3.4	42.0	3.70	45.7	Pass
18 :	:	220	0.4	-	0.42	_	_
19	:	8. 1	2.1	25. 9	2.24	27.7	Pass
20	:	-	0.4	-	0.42	-	-
21		8. 1	1.2	14.8	1.55	19.1	Pass
22 :	:	2	0.4	20	0.42	2	2
23 :	:	8. 1	1.2	14.8	1.28	15.8	Pass
24	: 3	-	0.4	-	0.42	-	=
25		8. 1	1.6	19.8	1.66	20.5	Pass
26	:	3 <u>2</u> 3	0.3	20	0.40	12	□
27	:	8. 1	1.3	16.0	1.55	19.1	Pass
28	: 3	2	0.3	-	0.40	-	2000
29	:	8. 1	1.6	19.8	1.66	20.5	Pass
30	:	2	0.3	20	0.40	_	2
31 :	:	8. 1	1.4	17. 3	1.66	20.5	Pass
32	:	- -	0.3	=	0.35	-	3
33	:	8. 1	0.9	11, 1	1.01	12.5	Pass
34	:	12 12 4	0.3	3	0.38	17	7
35	:	8. 1	1.4	17. 3	1.52	18.8	Pass
36	:	-	0.3	+	0.40	-	=
37	:	8. 1	0.8	9.9	1.10	13.6	Pass
38 :	:		0.3	20	0.35	17.0	2
39	:	8. 1	1.1	13.6	1.21	14.9	Pass
40	:	-	0.3	-	0.33	-	2000
21 - 3	39 :	25. 7	4.0	15. 6	4.20	16.3	77.

C.5 Immunity Test Results

Electrostatic Discharge Immunity Test Results						
Standard	☑ EN 61547: 2009 ☑ EN 61000-4-2 : 2006					
Applicant	Shenzhen AMB Technology Co., Ltd					
EUT	Smart Dimmable IP67 LED Tube	Temperature	23.9℃			
M/N	WP6F-T16-60W	Humidity	51%			
Test Mode	Lighting	Pressure	1008mbar			
Input Voltage	AC 230V,50Hz	Test Results	Pass			
Test Engineer	Zed Zhang					

		Results						Performance
Discharge mode	Test points	2kv		4kv		8kv		Criteria
		+	-	+	-	+	-	
	Front	P	P	P	P	/	/	В
	Back	P	P	P	P	/	/	В
Direct-Contact Discharge	Left	P	P	P	P	/	/	В
Discharge	Right	P	P	P	P	/	/	В
	Тор	P	P	P	P	/	/	В
	Bottom	P	P	P	P	/	/	В
	Front	P	P	P	P	P	P	В
	Back	P	P	P	P	P	P	В
Direct-	Left	P	P	P	P	P	P	В
Air Discharge	Right	P	P	P	P	P	P	В
	Тор	P	P	P	P	P	P	В
	Bottom	P	P	P	P	P	P	В
	Front	P	P	P	P	/	/	В
Indirect-Contact	Back	P	P	P	P	/	/	В
Discharge (VCP)	Left	P	P	P	P	/	/	В
(()	Right	P	P	P	P	/	/	В
	Front	P	P	P	P	/	/	В
Indirect-Contact	Back	P	P	P	P	/	/	В
Discharge (HCP)	Left	P	P	P	P	/	/	В
(1101)	Right	P	P	P	P	/	/	В

Note: "P" = Pass.

Radiated, Radio-Frequency, Electromagnetic Field Immunity Test Results								
Standard	☑ EN 61547: 2009 ☑ EN 6100	☑ EN 61547: 2009 ☑ EN 61000-4-3: 2006+A2: 2010						
Applicant	Shenzhen AMB Technology Co., Ltd							
EUT	Smart Dimmable IP67 LED Tube	Temperature	23.5℃					
M/N	WP6F-T16-60W	Humidity	53%					
Test Mode	Lighting	Pressure	1008mbar					
Input Voltage	AC 230V,50Hz	Test Engineer	Jason Deng					
Modulation	80% AM 1KHz	Test Results	Pass					
Steps	1%							

Side of EUT	Antenna polarization	Frequency Range (MHz)	Test Level (V/m)	Performance Criteria
Front	Vertical, Horizontal	80 to 1000	3	A
Right	Vertical, Horizontal	80 to 1000	3	A
Rear	Vertical, Horizontal	80 to 1000	3	A
Left	Vertical, Horizontal	80 to 1000	3	A

Electrical Fast Transient/Burst Immunity Test Results							
Standard	☑ EN 61547: 2009 ☑ F	☑ EN 61547: 2009 ☑ EN 61000-4-4: 2012					
Applicant	Shenzhen AMB Technology Co., Ltd						
EUT	Smart Dimmable IP67 LED Tube	Temperature	24.1℃				
M/N	WP6F-T16-60W	Humidity	54%				
Test Mode	Lighting	Pressure	1008mbar				
Input Voltage	AC 230V,50Hz	Test Results	Pass				
Test Engineer	Zed Zhang						

Toot Port Type	Test Level	Danatition Fraguency	Test Di	uration	Performance
Test Port Type	Test Level	Repetition Frequency	+	-	Criteria
AC Power ports	±1.0kV	5kHz	2min	2min	В
Signal/Control lines					
DC Input /Output Power ports					

Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields Test Results							
Standard	☑ EN 61547: 2009 ☑ EN 61000-4-6: 2014+A1:2015						
Applicant	Shenzhen AMB Technology Co., Ltd						
EUT	Smart Dimmable IP67 LED Tube	Temperature	24.1°C				
M/N	WP6F-T16-60W	Humidity	54%				
Test Mode	Lighting	Pressure	1008mbar				
Input Voltage	AC 230V,50Hz	Test Results	Pass				
Test Engineer	Zed Zhang						

Test Port Type	Frequency range (MHz)	Test Level (V/m)	Coupling method	Performance Criteria
AC Power ports	0.15 to 80	3	CDN	A
Signal/Control lines				
DC Input /Output Power ports				

Remark:

1. Modulation Signal: 1kHz, 80%, AM, Sine wave.

2.Measurement Equipment:

Simulator : CIT-10 (FRANKONIA)

CDN : □CDN-M2 (FRANKONIA)

☑CDN-M3 (FRANKONIA)

Surge Immunity Test Results					
Standard	☑ EN 61547: 2009 ☑ EN 61000-4-5: 2014+A1:2017				
Applicant	Shenzhen AMB Technology Co., Ltd				
EUT	Smart Dimmable IP67 LED Tube	Temperature	24.1℃		
M/N	WP6F-T16-60W	Humidity	54%		
Test Mode	Lighting	Pressure	1008mbar		
Input Voltage	AC 230V,50Hz	Test Results	Pass		
Test Engineer	Zed Zhang				

Test Port Type	Inject Line	Tset Level (kV)	Phase Angle	Number of surges	Repetition rate	Performance criteria
AC Mains Input	L-N	+ 1.0	90°	5	60s	С
		- 1.0	270°	5	60s	С
AC Mains Input	L-PE	+ 2.0	90°	5	60s	С
		- 2.0	270°	5	60s	С
AC Mains Input	N-PE	+ 2.0	90°	5	60s	С
		- 2.0	270°	5	60s	С
AC Mains Input	L&N-PE	+ 2.0	90°	5	60s	С
		- 2.0	270°	5	60s	С

Voltage Dips, Short Interruptions and Voltage Variations					
Immunity Test Results					
Standard	☑ EN 61547: 2009 ☑ EN 61000-4-11: 2004+A1:2017				
Applicant	Shenzhen AMB Technology Co., Ltd				
EUT	Smart Dimmable IP67 LED Tube	Temperature	24.1°C		
M/N	WP6F-T16-60W	Humidity	54%		
Test Mode	Lighting	Pressure	1008mbar		
Input Voltage	AC 230V,50Hz	Test Results	Pass		
Test Engineer	Zed Zhang				

Vnom	Frequency	Test Level	Duration	Performance criteria
AC 230v	50Hz	70% of Vnom	10 cycle(50Hz)	С
AC 230v	50Hz	0% of Vnom	0.5 cycle(50Hz)	В

-----THE END OF TEST REPORT-----